Splunk is the platform for a million use cases, used to investigate operational data across security, observability, fraud, business intelligence and many other domains. But, in my time at Splunk, I’ve come to realize that all of our customers face challenges that stem from the same core problem:
Within exploding data volumes, finding the anomalously behaving entities that are most threatening to the resilience of their organization.
Introducing the Splunk App for Behavioral Profiling, a collection of workflows which enable you to operationalise detection and scoring of behavioral anomalies at scale in complex environments, correlated to profile and highlight the entities that are affecting resilience - designed to help:
First, some foundational terminology.
I’ve used the term entity several times, but what is an entity? Well, it’s anything - any mappable group of “things” within which you can compare and find anomalous behaviors. Examples include: customers, business units, employees, applications, servers, branches, etc.
Meanwhile, a behavioral anomaly is a deviation from expected behavior; either a difference between an entity and its peers, an entity and its historic behavior, or some combination of the two.
Operationalising behavioral anomaly detections at scale, and resolving back to the entities they relate to, has in the past been a complex task with Splunk. It required understanding and implementation of:
In addition, features such as summary indexing and KV storage need to be leveraged to truly scale anomaly searches to potentially millions of entities - something you can read more about in Josh Cowling’s excellent blog post.
The Splunk App for Behavioral Profiling comes to the rescue by orchestrating all of the above behind a simple click-through workflow, enabling you to deploy behavioral indicator searches with one line of SPL, and introducing a simple scoring mechanism to focus attention away from the false positives and towards the entities that truly matter.
The app uses a three layer architecture to turn your raw data sources into behavior profiled entities:
Deploying an indicator search is as simple as pointing the workflow towards a dataset, selecting the field which represents the unique entity, and leveraging the dropdown menus to select a function to build the indicator metric you’ll be tracking (alternatively more advanced users can leverage SPL searches entirely). Once satisfied you can save, schedule and immediately backfill the search through the pop-up menu.
Defining and saving a new indicator rule
Scoring rules are then defined through the workflow using the data in the indicator index. Here you can choose from static conditional logic, standard deviation thresholding or anomaly detection powered by the Splunk Machine Learning Toolkit to define rules for determining anomalous behavior on either an entity by entity basis or across the entire group.
Once the anomaly criteria has been decided, you can simply define the scoring logic and again save, schedule and backfill the scoring rule.
Defining the logic for determining and scoring the indicator search anomalies
Once a scoring rule has been deployed, its attributions will immediately be aggregated with others to populate the Entity Behavioral Scores dashboard, which provides insight into the behavioral profile of your entities and a prioritized list of the most anomalous. Drilling down on an entity guides you to the Single Entity Profile view where you’ll see the history of an entity, its individual behavioral score attributions and the contributing raw events. From there, you can mark an entity as reviewed or add to an allow list to remove it from all underlying searches.
Visibility into rule performance is critical to ensure your environment continues to identify the most critical entities. Therefore, the app also provides several views to ensure you can identify where rules have drifted or run into performance issues.
Review Scoring Rules Dashboard
The Entity Behavior Scores dashboard contains information on the volume and scoring attributions contributed by each rule triggered, to guide where rules should be tuned. Meanwhile the Review Indicators and Review Scoring Rules dashboards provide operational context into the number of events returned and search performance from your deployed searches over time.
If you want to get started finding the entities behaving most anomalously in your environment, the Splunk App for Behavior Profiling is available today for download from Splunkbase for both Splunk Enterprise/Cloud customers with supporting documentation and video demonstrations for fraud and service monitoring use cases available.
Thank you, and happy profiling!
Special thanks to Josh Cowling, my co-developer on this app, for his vital support and to all the Splunkers and customers who’ve shaped the app’s development.
The Splunk platform removes the barriers between data and action, empowering observability, IT and security teams to ensure their organizations are secure, resilient and innovative.
Founded in 2003, Splunk is a global company — with over 7,500 employees, Splunkers have received over 1,020 patents to date and availability in 21 regions around the world — and offers an open, extensible data platform that supports shared data across any environment so that all teams in an organization can get end-to-end visibility, with context, for every interaction and business process. Build a strong data foundation with Splunk.