
A gentle introduction to OpenTelemetryA gentle introduction to OpenTelemetry

Amir and the
Magical Lens

Written By Illustrated By

Fabrizio Ferri Benedetti Naomi J. Carroll

Amir was a smart little boy. He lived
alone in the steppe with a huge, gentle
robot, Rusty. Amir had built Rusty from
scrap metal to have someone who’d
help him and keep him company.

For a robot built using used parts, Rusty
was remarkably sturdy. He always
moved at a slow pace, so Amir had to
wait for him sometimes. But Amir didn’t
mind: Rusty was his friend.

One day, Rusty stopped walking.
“What’s going on?” Amir asked. Rusty
didn’t know how to talk, so he pointed
at his legs. If he had shoulders, he
would have shrugged.

They were only half a mile away from
home. “Stay here. I’m going to find out
what’s wrong with you,” said Amir.
Rusty nodded and watched his friend
rushing for their hut.

Amir returned with his toolbag. With
some effort, he inspected every part
that might have failed. Nothing seemed
to be broken.

Then, he opened Rusty’s power
compartment and took a long look at
the heart, which was merrily glowing.
“I can’t tell what’s the problem. All your
pieces are in good shape,” he said.

They waited until night arrived. Rusty
lowered one of his heavy hands to
shield Amir from the cold, bitter wind
of the steppe.

The robot felt that the connection
between some of his parts was faulty,
but couldn’t look inside himself.
He didn’t know how he had been
assembled. He couldn’t help Amir at all,
and that thought saddened him.

The next day, Amir woke up and found
Rusty helplessly looking at him with
his yellow eyes. He patted the gigantic
arms of his friend. “I have an idea,” he
said. “I’ll be back. Don’t worry.”

Amir ran home and got into his lab, a
tiny shack with a tin roof. He worked
for two whole days and nights, sleeping
little.

On the morning of the third day, Amir
triumphantly raised his new invention:
It was a beautiful lens, one that would
allow him to look inside Rusty’s heart
and brain. It was shaped like a big “O”
and rimmed with circuits, and could
speak of all the light it collected.

Amir called it the “O-Tel.”

He ran back to Rusty. Amir smiled
and raised his arms to show his
recent invention. “This is the O-Tel, a
special kind of eye. Once I plug it into
your heart, it’ll allow me to see your
thoughts and feelings. Perhaps it’ll help
us find out what’s wrong.”

The robot clapped his hands, producing
thunderous but joyous booms that
echoed for miles. “May I plug it in?”
Amir asked. Rusty nodded as fast as he
could, which was very slowly.

Amir heartily laughed and jumped to
the back of his robot. He opened the
rear hatch and kindly plugged the
O-Tel in one of the sockets next to
Rusty’s big heart, instrumenting it.

The lens started glowing with the light
of all the signals it collected, which
would have been otherwise invisible.

“Rise,” Amir ordered with a calm and
sweet voice. Rusty didn’t move, but
light started projecting in front of him:
The O-Tel had cast a dozen different
traces onto the sandy ground. Each was
several meters long, branching like a
tree of golden light.

Amir crouched and began examining
them all. It was beautiful, but raw.
Understanding what each branch
meant would take time.

“Look! This branch here: It’s red and
long. What is this?” Amir asked. “It’s
the trace for the walking function,”
the O-Tel immediately replied. Rusty
turned his head and saw it too: A long
streak of ruby light departed from one
of the traces and then stopped.

This much was clear: Rusty couldn’t
walk because something prevented
his walking code from running. But
what was it? The web of traces — vast
and complex — was distorted by the
numerous bushes and rocks.

“We need a smoother surface,” Amir
decided. He pulled a blanket from his
backpack and laid it on the ground.
The rays of light shed by the O-Tel,
previously raw and broken, became
sharper and easier to follow when cast
onto the dark, wooly background.

Rusty, finally realizing what the traces
meant, let out a metallic sound of
satisfaction.

Amir looked again and saw that some
of the other traces contained the red,
faulty span. Some looked normal. For
each span he touched, the O-Tel said
what it was, how long it took to run,
and what parts it used.

Amir was learning a lot about how
Rusty worked. He could finally observe
what was going on inside his friend.

“Rusty has tried to walk at least 157
times since you brought me here. Both
of his legs failed to move, though,”
the O-Tel commented. The lens could
read Rusty’s memory, which contained
messages that bore the time when
something happened inside the robot,
what he did, and which components
were involved. “Which of these
branches has something to do with
that?” Amir asked.

Suddenly, there it was: A small orange
span intersected with the walking
trace, flashing intermittently. “That is
the energy pipeline that goes to your
motion module!” Amir exclaimed.
The O-Tel felt compelled to provide
additional information. “Rusty has all
his energy intact,” he calmly stated. If
Rusty still had energy, then something
was blocking the flow.

Amir didn’t wait any longer. He took a
screwdriver, climbed over his friend’s
shoulders, and started poking at the
main power line in Rusty’s neck.

In a matter of seconds, he found a bolt
nested between the metallic plates and
the cables that carried energy and data
to Rusty’s brain. Amir dislodged the bolt
with a swift movement.

Rusty flashed his eyes in surprise and
stood up. He could walk at last. O-Tel,
which was still projecting, politely
coughed. “Look at the traces now,” he
said.

Amir glanced at the trees of light and
saw how the ruby spans vanished and
turned golden. All was well. “Energy
levels have been fully restored,” the
O-Tel said with a hint of satisfaction.

Relieved, Amir and Rusty walked
home, the boy pacing briskly next to
his towering robot. They’d never feel
worried again.

The End

The Story Behind the Lens

Rusty is a robot made of many disparate components, an
artificial being that can accomplish lots of things on his own.
Many of the software applications we use every day are also
made of different components, much like Rusty, and they can
do many wonderful things. Assembling different parts is what
modern software developers do to build applications, because it’s
faster and more efficient.

When Rusty stopped moving, Amir couldn’t quite figure
out what was wrong. When big software applications fail,
understanding what’s causing issues is not straightforward, since
the way each different part interacts with the others is difficult

to see. With each component saying lots
of things at the same time, peering

into Rusty could have been like
entering a room full of people

yelling at each other.

Amir could have
disassembled Rusty to
solve the issue, but that
would have harmed his
friend. Instead, he thought

of something better: He went
back to his lab and created the

O-Tel lens, which could speak of
all the light it collected. For modern

software, the O-Tel lens of this
story is called the OpenTelemetry
framework, which everyone can
use to see inside applications.
That’s what developers call
“software observability.”

OpenTelemetry, also
known as OTel, is called that
because it’s open and because
it collects telemetry data.
“Open” means that anyone can
contribute to his development, as
its source code is open for all to see
and comment. “Telemetry” is all kinds of
data that OTel can collect from systems as complex and big as
Rusty.

The three main types of telemetry data are logs, metrics
and traces. Let’s see what each of those contribute to the
understanding of technical issues in software applications.

Logs

“Rusty has tried to walk at least 157 times since you
brought me here. Both of his legs failed to move, though,” the
O-Tel commented.

Logs are messages or records that describe events that
happened at a particular point in time. Think of them as entries
in a diary. When O-Tel told Amir how many times Rusty had
tried to walk, it was reading through all of Rusty’s log entries,
filtering out all that weren’t related to the action of walking.
Logs can be hard to search, but they provide a treasure trove of
useful information when one knows how to read them.

https://opentelemetry.io/
https://github.com/open-telemetry

Metrics

The O-Tel felt compelled to provide additional information:
“Rusty has all his energy intact,” it calmly stated. If Rusty still
had energy, then something was blocking the flow.

Metrics are measurements made over time. When the O-Tel
observed that Rusty still had all of his energy, it provided a
metric that contained a value (100%) and the name of the thing
being measured (energy). Metric data is useful to track the
health of a system over time, and can be used to trigger alerts
in observability backends (more on this in a minute). Even
in the real world we’re surrounded by metrics: for example,
speedometers in cars, or pressure gauges in pipelines.

Traces

Rusty didn’t move, but light started projecting in front of
him: The O-Tel had cast a dozen different traces onto the
sandy ground. Each was several meters long, branching like a
tree of golden light.

Traces are the core of observability data: They represent the
journey of a request through a system. Tracing is the action of
creating representations of requests and their journeys: When
the O-Tel projected light onto the ground, it was tracing all that
was happening inside of Rusty. In that case it was “distributed
tracing,” because the requests for walking went through several
parts of Rusty, like his brain and heart.

Amir looked again and saw that some of the other traces
connected to the red, faulty span. Some looked normal. For
each span he touched, the O-Tel said what it was, how long it
took to run, and what parts it used.

Each branch of the tree of light is a span. Traces are defined
by their spans, which are the smaller branches connected to the
big ones. Spans can be short or long, depending on the duration
of each action inside the system. What about the red spans,
though? How did the O-Tel know that that particular branch
was faulty?

Context propagation, resources and baggage

The magic of OpenTelemetry comes from its ability to connect
different data sources, a mechanism called context propagation.
Each span carries an identifier (a signature) that can be used
to connect causes and effects. This data is complemented by
the baggage, which, as the name implies, is a bunch of name-
value pairs, such as “leg:right.” Finally, spans can carry resource
attributes, such as the environment in which code is running, or
the name of the application–in this case, “Rusty.”

Instrumentation

How is all this data collected? OpenTelemetry defines the
format of the data and how all components talk to each other in
a specification, which is like a book of rules. That only tells how
to build the “lens,” though, and how the lens should cast the rays
of light. How is data collected?

Amir heartily laughed and jumped to the back of his robot.
He opened the rear hatch and kindly plugged the O-Tel in
one of the sockets next to Rusty’s big heart, instrumenting
it. The lens started glowing with the light of all the signals it
collected, which would have been otherwise invisible.

What Amir does when plugging the O-Tel next to Rusty’s
heart is to instrument it. OpenTelemetry does something very

https://opentelemetry.io/docs/ruby/context_propagation/
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/overview.md#baggage-signal
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/resource/sdk.md
https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/resource/sdk.md
https://github.com/open-telemetry/opentelemetry-specification

similar when developers instrument their software with it: To
let the code “speak” to OTel, one must connect to it using SDKs,
which are kits that allow code to be plugged into other code in a
way that doesn’t break applications.

Once the application is instrumented, OpenTelemetry collects
telemetry using the Collector, which is a special listener that
quietly sits in the system, grabbing all the “light” that comes to
it. In the story, that Collector is the inner face of the lens. Data is
then “exported” or sent away (the outer face of the lens). Where
is data sent, though?

Observability backend

The web of traces, vast and complex, was distorted by the
numerous bushes and rocks.

Analyzing all the data exported by the OpenTelemetry
Collector can be a daunting task. What to make of all the spans,
metrics and logs? How can one extract sensible information
from all the collected data? The answer lies in the observability
backend, which is an application that can visualize and process
software telemetry.

“We need a smoother surface,” Amir decided. He pulled
a blanket from his backpack and laid it on the ground. The
rays of light shed by the O-Tel, previously raw and broken,
became sharper and easier to follow when cast onto the dark,
wooly background.

For this purpose, OpenTelemetry not only collects data, but
also exports it in different formats, depending on the target
backend. Some backends are open source, such as Jaeger or
Prometheus. Other backends are commercial, and include features
that the open source backends may lack. OpenTelemetry is

https://opentelemetry.io/docs/concepts/instrumenting/
https://opentelemetry.io/docs/collector/
https://opentelemetry.io/docs/js/exporters/

not picky in this sense, and can export data to many different
backends, including Splunk Observability Cloud.

https://www.splunk.com/en_us/observability.html

To learn more, read
5 Reasons Managers

Choose OpenTelemetry.

A gentle introduction
to OpenTelemetry and

software observability in
the DevOps era.

https://www.splunk.com/en_us/form/5-reasons-managers-choose-opentelemetry.html
https://www.splunk.com/en_us/form/5-reasons-managers-choose-opentelemetry.html

